Technology Space and Strategic Alliance
In a Converging Sector

Anindya Ghosh & Johannes M. Pennings
(AoM Symposium on Knowledge Integration Process)
Anaheim, 2008
Motivation and Research Questions

• The architecture ("rules of the games") of Industries or Sectors is shaped to a large extent by firm activities in technology and corporate development.

• We try to map the Converging Imaging Sector as a "Technology Space" as well as an "Arena for Strategic Cooperation" and answer the following:

 Sector Level

 – How do we describe the *technology space* in a given Sector?
 • *Status system*
 – Network constructed through deference relations (Stuart, 1998) in Intellectual Property (IP)
 – Complementarities in IP and relative participation in the space

 Firm Level

 – How do legacy capabilities of firms affect alliance activities in a converging sector?
 – Does the status of the firm in the technology space produce a propensity for alliance formation?
 – What is the effect of technology specialization of the firm on alliance formation?
 – Is the degree of membership of the firm in the sector important to predict alliance?
Theory & Hypotheses (I)

– Legacy capabilities are the basis of firm status and many firms endowed with those capabilities face obsolescence in a converging sector
 • Even if facing obsolescence, firms endowed with important complementary assets might survive the onslaught of discontinuous technologies (Teece, 1986; Tripsas, 1997). And they might have more incentives to partner with other firms to increase the life of intangible assets that might decline economically as the sector experiences convergence.

 H1 The higher the firm’s patenting in a technology category threatened by obsolescence, the higher its rate of alliance formation.

– Centrality of firms in the sector specific technology space and status
 • More central firms enjoy higher status (Podolny & Stuart, 1995) and are prone to loss aversion (Thaler, 1984) and status leakage (Podolny, 2001) when facing lower status partners in uncertain environment

 H2a The higher a firm’s status (betweenness centrality) the lower its rate of alliance formation
Theory & Hypotheses (II)

– Diversity of IP within the sector specific technology space

 H2b The more diffuse a firm’s status *(higher the diversity)* the lower its rate of alliance formation

– Degree of participation in sector specific technology space relative to overall participation of the firm in technology development activities
 • *High levels of participation imply greater status saliency and attendant conformity* (Homans, 1951; Fleming, 2005, Hagedoorn et al., 2003)

 H2c The more marginal a firm’s presence *(participation)* in the sector, the lower its rate of alliance formation
Data

• Patent Data
 – Focal patents provided by Eastman Kodak
 • 35,473 patents with 3660 assignees and 3039 firms from 1976 to 2002
 • 17,224 patents classified as digital
 • 18,091 patents classified as chemical
 – USPTO & NBER
 • We collect two generation of patents that are cited by the focal patents and that cite them
 • 178,796 patents from 1976 to 2002
 • 16,475 firms in the assignees

• Alliance Data
 – SDC Platinum
 – 249 firms from population of 3039 with alliance data from 1989-1998

• Financial Data
 – Compustat, Worldscope
Variables

- **Dependent Variable**
 - *AllianceCount*: A count of the number of alliances made by firm i at time t+1

- **Independent Variables**
 - *BetweenCentrality*: Betweenness Centrality of firm i in the network of firms formed by backward patent citations in five years prior to and including time t
 - *Legacy*
 - *Chem IP*: A count of the number of patents in the technology category of Chemical as defined by Jaffe, Trajtenberg & Hall (JHT) by firm i at time t
 - *C&C IP*: A count of the number of patents in the technology category of Computers & Communication as defined by JHT by firm i at time t (proxy for Digital)
 - *IP Specialization*: Diversity (Herfindahl) measure of firm i’s patenting using the JHT categories of technology
 - *Participation*: Percentage of patents of firm i at time t in the sector’s Technology Space
Main Results

- **Status** inferred from betweenness centrality has negative effect on Alliance Propensity

- **Diversity** or technological diversification (specialization) has positive (negative) effect on Alliance Propensity

- Participation or Degree of Membership in Imaging Sector is not signification but if it is combined with **Status** there is strong propensity to ally as shown in [this figure](#)
Conclusions

- Industry evolution in a converging sector is mapped using three firm IP variables: *Status, Technology Diversity and Degree of Participation*

- IP activity informs about corporate development activities (IP vs. Alliance behavior)
 - High status (central) firms have lower propensity to collaborate perhaps because of loss aversion and status leakage

- IP specialization within Imaging sector discourages Strategic Collaboration
 - Generalists shun partnering with specialists maybe because of
 - *Status leakage or loss aversion*
 - *Collaborations require absorptive capacity that specialist might lack given the breadth of technological expertise required given the uncertainties in a converging sector*

- If firm status is high and firms have reasonably high participation in sector they have strong motivation to monetize their capabilities through alliance activities
2-way Interaction Effects

Alliance Count

Participation
- High
- Medium
- Low

Between Centrality

1.0 \times 10^6 \quad 2.0 \times 10^6 \quad 3.0 \times 10^6 \quad 4.0 \times 10^6 \quad 5.0 \times 10^6
Convergence

Evolution of Chemical & Digital Patenting Percentage

- chempercent
- digitalpercent
Full Regression Results

<table>
<thead>
<tr>
<th>Specifcation</th>
<th>Alliance Count from 1989-1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Fixed Effect Negative Binomial</td>
</tr>
<tr>
<td>Dep Var: AllianceCount</td>
<td></td>
</tr>
<tr>
<td>BetweenCentrality</td>
<td>-1.79e-07*** (5.25e-08)</td>
</tr>
<tr>
<td>Legacy</td>
<td>-3.96e-07*** (9.88e-08)</td>
</tr>
<tr>
<td>Chem IP</td>
<td>-3.36e-07*** (1.04e-07)</td>
</tr>
<tr>
<td>C&C IP</td>
<td>0.000440** (0.00202)</td>
</tr>
<tr>
<td>Mech IP</td>
<td>0.000372 (0.00262)</td>
</tr>
<tr>
<td>Drugs IP</td>
<td>0.00152 (0.00274)</td>
</tr>
<tr>
<td>EEG IP</td>
<td>-7.05e-08 (0.00135)</td>
</tr>
<tr>
<td>Other IP</td>
<td>0.000877 (0.00187)</td>
</tr>
<tr>
<td>IP Specialization</td>
<td>-0.00344 (0.00086)</td>
</tr>
<tr>
<td>Participation</td>
<td>-0.00357 (0.00038)</td>
</tr>
<tr>
<td>BetweenCentralityXParticipation</td>
<td>-0.262** (0.262)</td>
</tr>
<tr>
<td>Entry</td>
<td>-0.260** (0.260)</td>
</tr>
<tr>
<td>IP Flow</td>
<td>0.000325 (0.000313)</td>
</tr>
<tr>
<td>PriorAlliances</td>
<td>7.79e-07*** (2.82e-07)</td>
</tr>
<tr>
<td>yr90</td>
<td>0.00127*** (0.00257)</td>
</tr>
<tr>
<td>yr91</td>
<td>0.127*** (0.127)</td>
</tr>
<tr>
<td>yr92</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>yr93</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>yr94</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>yr95</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>yr96</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>yr97</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>yr98</td>
<td>1.711*** (0.124)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.686-06** (1.46e-06)</td>
</tr>
<tr>
<td>Observations</td>
<td>1385</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-2362.0874</td>
</tr>
<tr>
<td>Wald Ch-square</td>
<td>580.46***</td>
</tr>
<tr>
<td>Number of cid</td>
<td>167</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1